故障现象:一辆东风EQ1090D型汽车在行驶中消声器出现放炮现象,停车检查中,当把点火线圈高压总火线拔下,在距离缸体34mm处试火,扳动分电器断电触点或摇转曲轴时,跳火均正常,但发现分电器断电触点有烧蚀现象。用砂条修磨触点并调整间隙至0.35-0.45mm后,发动机启动后运转正常,但是当汽车行驶约40公里后,消声器又出现放炮现象。
故障检查与排除:根据上述现象对消声器放炮原因进行了仔细分析,为找出故障症结,检查了点火次序、分电器断电触点臂弹簧力、点火正时、火花塞等均未发现问题。继续检查化油器空气滤清器、气门间隙也没结果。再次启动发动机又运转正常,但是没有多久旧病又复发了。 停车再次检查分电器部分。通过拆卸和仔细检查,终于发现断电器触点臂至低压接线柱的铜胶线在拐弯处折裂,只剩下几根细铜丝相连。更换断裂的铜胶线后,故障现象消失。 故障分析:当分电器低压导线部分铜丝折断后,导线横截面积减小,从而使初级电路电阻增大,电路中电流减小,造成点火线圈产生的高压不足。当发动机温低时,虽然启动困难一些,但启动后发动机能正常运转。待发动机温度升高后,点火线圈温度随之升高,电阻又随温度上升而增大,?所以点火线圈产生的高压电会更加不足,高压火花更弱,甚至断火。由于不时断火,气缸里未被点燃的可燃混合气排入消声,在消声器中膨胀时,遇到废气中的火星即发生爆燃,表现为消声器放炮。
阻火器是防止外部火焰窜入存有易燃易爆气体的设备、管道内或阻止火焰在设备、管道间蔓延。而阻火器的类型很多,储罐阻火器、防爆管道阻火器等都属于其中;储罐阻火器是应用火焰通过热导体的狭小孔隙时,由于热量损失而熄灭的原理设计制造。储罐阻火器的阻火层结构有砾石型、金属丝网型或波纹型。而防爆阻火器是用来阻止易燃气体、液体的火焰蔓延和防止回火而引起。这类阻火器内的阻火层常用不锈钢带或铜镍合金材料压制而成的波纹状,波纹的大小由气体性质和阻止火焰速度决定。
原理
一、微孔板吸声结构的理论
在板厚小于1.0mm的薄板上穿以孔径小于等于1.0mm的微孔,不锈钢矩形消声器,穿孔率为1~5%,
后部留有一定的厚度(5-20cm)空气层,该层不填任何吸声材料 ,不锈钢矩形消声器加工,这样即构成了微穿孔板吸声结构。它是一种低声质量,高声阻的共振吸声结构,不锈钢矩形消声器价格,其研究表明,表征微穿孔板吸声特性的吸声系数和频带宽度,不锈钢矩形消声器报价,主要由微穿孔板的声质量m和声阻r来决定,而这两个因素又与微孔直径d及穿孔率p有关。微穿孔板吸声结构的相对声阻抗Z(以空气的特性阻抗ρC为单位)用式(1)计算:
Z=r+jwm=jctg(WD/C)(1)
公式中:
ρ--空气密度(kg/cm3);
C--空气中声速(m/s);
D--腔深(mm);
m--相对声质量;
r--相对声阻;
w--角频率,W=2πf(f为频率);
而r和m分别由式(2)(3)表达:
r=atkr/dzp(2)
m=(0.294)×10-3tkm/p(3)
式中:
t--板厚(毫米)
d--孔径(毫米)
p--穿孔率(%)
kr--声阻系数kr=(1+x2/32)1/2+(2x)1/2/8×d/t
km--声质量系数km=1+{1+[1/(9+(x2/2))]}+0.85d/t
其中x=abf,a和b为常数,对于绝热板a=0.147,b=0.32;对于导热板a=0.235,b=0.21。声吸收的角频带宽度,近似地由r/m决定,此值越大,吸声的频带越宽。r/m=(l/d2)×(kr/km)(4)
式中l--常数,对于金属板l=1140,而隔热板l=500。上式也可以用式(5)表达:
r/m=50f((kr/km)/x2)(5)
而kr/km的近似计算式为:
kr/km=0.5+0.1x+0.005x2(6)
利用以上各式就可以从要求的r、m、f求出微穿孔板吸声结构的x、d、t、p等参量。由于微穿孔板的孔径很小且稀,基声阻r值比普通穿孔板大得多,而声质量m又很小,故吸声频带比普通穿孔板共振吸声结构大得多,一般性能较好的单层或双层微穿孔板吸声结构的吸声频带宽度可以达到6~10个1/3信频程以上。这就是微穿孔板吸声结构大的特点。
共振时的大吸声系数α0为α0=4r/(1+r)2(7)
具体设计微穿孔板吸声结构时,可通过计算,也可查图表,计算结果与实测结果相近。在实际工程中为了扩大吸声频带的宽度,往往采用不同孔径、不同穿孔率的双层或多层微穿孔板复合结构。
您好,欢迎莅临益航空调,欢迎咨询...
![]() 触屏版二维码 |